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Abstract-Laminar free convective heat transfer within parabolic enclosures has been investigated using 
numerical computation methods. The geometry is a long cavity made up of a parabolic wall bowed over 
a horizontal wall. Due to symmetry, the analytical model is one-half of a two-dimensional cross-section 
consisting of a hot parabolic upper-wall, a cold horizontal base and an adiabatic vertical wall. Two cases 
of heat input from the parabolic upper-wall have been considered, namely (i) isothermal condition on the 
hot wall, and (ii) constant heat-flux through the hot wall. The base and vertical walls are made isothermal 
and adiabatic, respectively. A finite difference technique called ‘staggered differencing’ (SD) for both 
regular and irregular boundaries is applied in the iterative solution of the mass, momentum and energy 
equations. Steady state solutions have been obtained for the heat transfer to the cold base in the form of 
local and mean Nusselt numbers for 0.05 6 H/B < 1.0, 0 $ Gr, < 109, 0.73 < Pr < 20 and 0 < C, $ 0.33. 
Results show that in case (i) the heat transfer rate to the cold wall increases with increase in Gr and Pr but 
decreases with increase in H/B and C,, except for an anomaly for C, = 0.33, i.e. the circular profile. In 

case (ii), the heat transfer rate increases with increase in Gr, H/B, Pr and C,,. 

INTRODUCTION 

STUDIES of laminar free convection in parabolic 
enclosures may be readily appreciated in con- 
sideration of the following two applications: (i) 
roofing-design of buildings for efficient air con- 
ditioning and (ii) design of efficient solar stills. 

With respect to the former, roofing-designs are usu- 
ally based on gross empirical formulations that are 
more suited to flat-top roofing than the more common 
pitched top, or the less common curved-top. Fun- 
damental theoretical investigations that would really 
explain the intricate heat-transfer phenomena in the 
various roofings are often bypassed. Recently, 
however, there has been quite a few research studies 
akin to the heat transfer phenomena in flat-roofs as 
modelled by rectangular cavities, and to pitched-roofs 
as modelled by triangular cavities. Free convective 
heat transfer in rectangular cavities include the works 
of Poots [l], Davis [2], Newell and Schmidt [3], Mac- 
Gregor and Emery [4], Elder [5] and Yin et al. [6]. 
Studies on triangular cavities include those of Akin- 
sete and Coleman [7] and Flack and Witt [8]. These 
studies, some of which have been both theoretical and 
experimental, have enhanced the scientific knowledge 
of the heat transfer processes in the triangular and 
rectangular roofing types. Nevertheless, quite a few 
buildings have curved (parabolic) tops. These are 
often found in green houses, industrial buildings, 
arenas, nuclear power plants and houses in extreme- 
temperature regions of the world. 

With respect to the second area of application, i.e. 
solar stills, most are designed in the form of plain 
glass or Plexiglas placed horizontally or inclined over 
sets of heat absorbers, as elaborated by Edwards [9]. 

A clock-work mechanism is sometimes incorporated 
to rotate the collectors as the sun moves across the 
sky. However, a curved (convex) surface not only 
collects sun-rays from over a much wider range, but 
also concentrates the rays better than does a plain 
surface. A parabolic-surface collector, therefore, 
could operate effectively without a tilting mechanism, 
once it is properly installed. 

Analytic studies of natural convection within con- 

centric cylinders and spheres include the works of 
Powe et al. [lo], Mack and Bishop [l 11, Mack and 
Hardee [12], Carleyet al. [13] and Hodonett [14] while 
experimental studies include those of Scanlan et al. 
[15], Weber et al. [16] and Pneuli [17]. 

The present research is thus primarily aimed at the 

following two objectives: (i) to determine the free 
convective heat transfer characteristics for regions 
within curved roof-tops, and (ii) to find possible opti- 
mum surface curvatures for the design of solar col- 
lectors. 

MATHEMATICAL FORMULATION 

Analytical model 
The analytical model consists of a two-dimensional 

cross-section of a roof which is infinite along its axis 

(Fig. 1 (a)). Due to symmetry, the half-problem is used 
in the analytical formulation as a domain bounded 
above by a parabolic hot wall, HB, a horizontal cold 
wall, OB and an adiabatic wall, OH (Fig. 1 (b)). 

Governing equations 
The fluid within the cavity is assumed to be inviscid, 

incompressible, Newtonian with constant properties. 
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NOMENCLATURE 

area of parabolic enclosure 
variation parameter of parabola 

(Fig. 1 @I) 
characteristic length = model base 
length [m] 

concavity factor = ratio of area HBS to 
area HBO (Fig. l(b)) 

specific heat capacity at constant pressure 
[J kg ’ K ‘7 
gravitational acceleration [m s ‘1 
Grashof number, @/3ATB ‘iv’) 

heat transfer coefficient [W m ~’ K ‘1 
height ,of parabolic enclosure [m] 
generdhsed node point 
coefficient of thermal conductivity 

[Wm-‘Km’] 

I’ ,r-component of velocity [m s ‘1 
V dimensionless velocity in r-direction. 

Greek symbols 

; 
coefficient of thermal diffusivity [m’s ‘1 
coefficient of volume expansion [“C ‘1 

0 dimensionless temperature, 

(T- T,)/( T,, - T,) or (T- T,),‘(q, B/k) 

v dynamic viscosity [N s m ‘1 

;, 

kinematic viscosity [ml s ‘1 
general function for field variables 

i stream function [m’s ‘1 
Y dimensionless stream function 
(0 vorticity [s ‘1 
a dimensionless vorticity. 

total number of nodes in a grid system 
local Nusselt number, h.x/k Subscripts 

Prandtl number, v/x = pC,/k c cold wall 

heat flux [W m ‘1 B based on characteristic length, B 

temperature [’ C] H hot wall 

.u-component of velocity [m s ‘1 11 normal direction 

dimensionless velocity in .x-direction W wall condition 

characteristic velocity scale, vGr “l/B Y locul value at x. 

The flow field is two-dimensional with negligible vis- Z2Q 
cous dissipation. Introducing the dimensional charac- 

;Yz+!;F_Gr’~ 
,, 

teristic variables such that 

‘y= -y 
B’ 

y=?; 

B’ 

o= 
T- T, T-T, 

T,-T, Or yn Blk 

Y=& 0lB 
and R = u+ 

where 

in the conservation equations, there results the fol- 
lowing dimensionless equations : 

?Y 
I/ = 

17 Y 
(3) 

Cold wall 

(a) The full problem (a) The half problem 

FIG. 1. Analytical models of the physical problem. 
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aY 
v= -ax 

and 

Equation (1) is obtained from the X- and Y-com- 
ponents of the momentum equation after eliminating 
the pressure terms by cross-differentiation. The above 
set of equations is subject to the following boundary 
conditions : 

U = V = 0, at all walls (ha) 

Y = 0, at all walls (6b) 

0 = 0, at the cold wall (7a) 

gi = 0, at the adiabatic wall (7b) 

0 = 1, at the hot wall (Case I) (8a) 

ae 
an’ 

- 1, at the hot wall (Case II) (8b) 

av au 
ax ay 

= R at all walls 

where n is the direction normal to the curved hot 

surface. 

Geometric parameters 
The theoretical analysis considers a generalised 

parabolic profile. However, the numerical com- 
putations require some parameters to characterise the 
physical variations of the enclosure. For this purpose, 
the height-to-base ratio, H/B characterises the size of 
the domain while the concavity factors, Cn charac- 
terise the profile, i.e. the size of bulge (Fig. l(b)). 

Irregular boundaries 
The parabolic hot wall creates the problem of 

irregular boundary in the application of the finite 
difference numerical solution technique. This makes 
it very difficult to deal with the Neuman-type of 
boundary condition. Moreover, high Grashof number 
range of solutions require large number-of-nodes in 
the discretisation process. The resultant effect is that 
the application of special routines as prescribed by 
Smith [18] and Carnahan et al. [19] for the com- 
putation of derivatives at normalised boundary nodes 
becomes rather tedious. 

This problem is overcome by normalising all the 
irregular boundary nodes and applying the staggered 
differencing (SD) computational technique due to 
Nwabuko [20]. 

When the differential equations for the field vari- 
ables (equations (l)-(3)) are cast into the SD form, 
they acquire the following general format : 

D,, i=1,2 ,..., M 

i.e. 

i= 1,2,...,M (10) 

where, @ is a general function representing a field 
variable such as 6, Y and R. The coefficients of 0, 
i.e. the Ai,s, depend on the particular variable being 
considered where, at a given point, i = j = 0 when the 
referenced local node corresponds to the global node 
under computation (Fig. 2). For example, when the 
energy equation (2) is considered, the coefficients of 
0 are given as 

A,, = (Yo+6,--GIOPrGU,-BoPrGVi) 

Ai, = (y,+a,PrGUJ 

A, = (G,+B,Pr GV,) 

A, = (y~+cQrGU,) 

1 

(11) 

A, = (&+/Wr GVJ 

D=O 

where G = Gr ‘I’, c(, /?, y and 6 are functions of the 
local AX and AY relative to the node point i and Pr 
is Prandtl number. 

Solution procedure 
The numerical solution procedure consists of cyclic 

Gauss-Seidel iterative computation on the set of SD 
representations of the governing equations (l)-(5), 
while imposing the respective boundary conditions 
for each equation in turn. The sequence is as follows : 

(i) A specification of H/B and Cft, the geometric 
parameters, initialises the automatic mesh-generator 
which constructs and stores an appropriate solution 
grid. 

(ii) The main program picks up the energy equa- 
tion (2) in the form of equation (lo), imposes the set 
of temperature boundary condition equations ((7a), 
(7b) and (8a)) or ((7a), (7b) and (8b)), depending on 
whether Case I or Case II is specified. Then with 
an arbitrary initial temperature distribution (usually 
zero) within the domain and zero velocity at all the 
nodes, the energy equation is solved iteratively to 
convergence. This would be the pure conduction solu- 
tion corresponding to Gr = 0. 

(iii) When a Grashof number, Gr > 0 is specified, 

4 

FIG. 2. Local node identification. 
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the wall velocities are retained as zero and the energy 
equation is solved in full as 

using the convergence criterion, 

/(I’;’ ’ -Of < IO J. 

The converged temperature values Of?,\,,, are stored 
separately as (I:- ,,,,,. for later USC in tests for global 
convergence. 

(iv) The vorticity equation (I) is solved next. It 
requires wall vorticity R, for its solution. This is pro- 
vided by using the latest computed values of I! and C’ 
along the walls in equations (3) and (4) to obtain ‘I’, 
which is then used in equation (5) to obtain 0, along 
the walls. After this, the interior values of R, are solved 
for iteratively, with the SD representation of equation 
(I). until convergence is obtained. 

(v) The stream function equation is then solved. 
Boundary conditions are specified as Y = 0 on all 
walls. Arbitrary initial distribution ofY = 0 is effected 
on the interior and the SD representation of equation 
(5) is solved iteratively until convergence is obtained 
for Y. 

(vi) The latest values of Y arc used in equations 
(3) and (4) for direct computation of U- and V-velocity 

components, respectively. 
(vii) Using current values of Ii and V, the com- 

putational procedure returns to step (iii) and the 
energy equation is solved once again. Local con- 
vergence of (I now produces /I:‘?,‘.,, which may then be 
compared with the previous 0: , +, to determine global 

convergence. If O:‘T,‘,,rr and (I:‘~ ,.$, meet the con- 
vergence criterion, a solution of the overall problem 
is deemed to have been achieved for the specified C;F, 
othcrwisc. the scheme moves down to step (ib). i.e. 
the solution of vorticity equation, after replacing 
I): ,,,, with (I:‘=’ ,‘,\l. 

(viii) Whcnevcr global convergence is achieved the 
local and mean Nusselt numbers Nu, and I?(;, arc 
computed, respectively as 

(13) 

(14) 

The integration in equation (14) is carried out by a 
numerical trapezoidal integration sub-program. 

Higher Grashof numbers require finer dis- 
crctisation which creates more nodes. Thus, three 
different half-mesh sizes of I5 x I5 (120 nodes), 
29 x 29 (435 nodes) and 57 x 57 (I653 nodes) were 
used for a Grashof number range 0 < (;Y < IO’. 
depending on the value of H/R. 

RESULTS AND DISCUSSION 

In the presentation of the distribution of the field 
variables and heat transfer characteristics, values of 
HiR = 0.25 and C,, = 0.33 (i.e. circular segment) have 
been used. This choice is influenced by the relative 
ease of fabrication for both experimental and full scale 
applications. Also high Grashof numbers in the range 
IO’ < Gr ,< 10” have been used in consideration of the 

(a) Isotherms 

3 
0 0.5 1.0 

(b) Velocity 

u v = 0.2 

Y 
* -o- -0.05 
* + -0.75 
4. * -1.50 
-bb- +0.05 
w +1.50 
- +2.50 
D +5.50 

FIG. 3. Distribution of some iield variables for the isothermal condition fur H B = 0.25. C,, = 0.3? and 
Gr = IO’. 
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cp 
-o.o.o- -0.00001 
-cI) -0.001 
e -0.0025 
- +o.oooo5 
+.8-+ +o.ooou 

FIG. 4. Distribution of some field variables for the constant heat-flux condition for H/B = 0.25 and 
C, = 0.33 and Gr = 10’. 

practical applications discussed in the introduction. 
For example, it is estimated that an average solar heat 
flux of 1 kW m-’ reaches the earth’s surface around 
noon each day and this translates to a Grashof num- 
ber of about lo9 for the constant heat flux case. 

Figures 3(a)-(c) show the distribution of tempera- 
ture, resultant velocity vector and stream function, 
respectively for H/B = 0.25, C,, = 0.33 and Gr = 10’. 

!!, 
0.5 1.0 

Of interest is the remarkable contrast between the 

Gr = 0 (pure conduction) and Gr = 10’ patterns in 
Fig. 3(a). This pattern is consistent with the dual 

streamline pattern of Fig. 3(c). Figures 4(a)-(c) are 
the constant heat-flux (Case II) versions of Figs. 3(a)- 
(c). A double-flow pattern also exists in this case but 
the magnitudes and positions of the patterns differ. 

Figure 5 shows the local Nusselt number, Nu, dis- 

4.0 

2.0 

0 

4.0 r 

FIG. 5. Local Nusselt number, Nu, distribution along cold 
wall for isothermal condition for H/R = 13 75 

FIG. 6. Local Nusselt number, Nu, distribution along the 
--,- _.-_. cold wall for the constant heat-flux condition for H/B = 0.25. 
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FIG. 7. Mean Nusselt number vs Grashof number for various 
concavity factors (0.15 < Crt < 0.33) and (0.05 < H/B d 

1 .O) for isothermal hot-wall. Case 1. 

tribution along the cold wail for Case I, for C’,, = 0.33, 
0.225 and 0.15, respectively. The local heat transfer 
rate is almost indistinguishable for Gv = 0 and 
Gr = IO’. However, a distinctive heat transfer pattern 

emerges for Gr = IO’. It is obvious from the patterns 
of Figs. 3 and 5 that the effects of convection currents 
become significant in the range Gr 3 IO’. In the latter 
figure. one observes that a large fraction of the heat 
transfer is concentrated in the last one-third of the 
base. This condition is fairly consistent for all C’,,s 
considered. However. the fraction of the overall heat 
that is transferred through this i length depends on 
the Gr range. A similar heat transfer pattern has been 
reported by Akinsete and Coleman [7] and Talabi [2 11 
for triangular geometries. 

Pigurc 6 is the constant heat-flux version of local 
Nusselt number distribution. It is easily observable 

that the last 4 length does not have the concentrated 
heat-transfer of Case I but rather a relatively stnall 
value, mostly due to conduction. 

f-:igures 7 and 8 are generalised plots of the mean 

Nusselt number as functions of Grashof number for 
Casts I and II. respectively, from which the general 
conclusions regarding heat transfer in parabolic 
enclosures can eventually bc drawn. Some of the result 
data of ref. [7] have also been shown in Fig. 7 for 
C,, = 0. 

Finally. it would be instructive to compare the 
present results with some of those available for tri- 
angular enclosures and thus. draw some conclusion 
on their relative heat transfer characteristics. 

(i) In the isothermal Case I. the heat transfer pat- 

2.0 r 

l -r-•-•-.4, c, 
----__ ___a() 

- -0.15 
-*- 0.225 

H/B = 1.0 
- 0.33 

FIN. 8. Mean Nusselt number vs Grashof number for various concavity factors (0 < C,, < 0.33) and 
(0.05 < H/B < 1 .O) for constant heat-flux condition, Case II. 
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tern in the form of local Nusselt number Nu, tends to 
be more uniformly distributed over the cold base for 
the parabolic section than the triangular section as 

reported by Akinsete and Coleman [7]. In the tri- 
angular case, the heat transfer rate is generally very 
high near the junction of the hot and cold walls. This 
pattern is similar to the ones obtained for the para- 
bolic profiles at low Grashof number. 

(ii) In the constant heat-flux Case II, the parabolic 
profile is seen to enhance convective heat transfer as 
may be observed from the higher overall heat-transfer 
rate along the cold wall in comparison to triangular 
profile. Besides, the local heat transfer rate is more 
uniform in Case II. In making the above two com- 
parisons, the results of the most effective parabolic 
profile (Cn = 0.33) which corresponds to a circular 
profile has been used. Nevertheless, the other para- 
bolic profiles (C,, = 0.225, 0.15, etc) show similar 
trends as those of C,, = 0.33. 

(iii) For the isothermal case, the heat transfer to 
the cold wall as measured by the mean Nusselt 
number, Nu,, increases slightly with increase in Gr 

and Pr (Fig. 7) but decreases with increasing H/B and 

increasing Crt, with the exception of C,, = 0.33, which 
can be considered an anomaly. This latter geometric 
configuration has the highest Nu, next to C,, = 0.15 
instead of the expected lowest. This is consistent for 
all the H/B considered in Case I (Fig. 7). 

(iv) For the constant heat-flux configuration, the 
heat transfer rate, Nu,, increases with increasing Gr, 

H/B, C,, (Fig. 8) and Pr. 
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